LED线条灯厂家,LED灯具厂家,LED护栏管厂家,轮廓灯,普维发光

您的位置:主页 > LED护栏管 >

关于LED驱动技术分析

发布日期:2022-06-12 18:59   来源:未知   阅读:

  •   美国确诊达718万例!疫情重创主·广州白云示范社区改造惠民众 舞狮等广府民俗,的发光原理是在它两端加上正向电压,使半导体中的少数载流子和多数载流子发生复合,放出过剩能量,从而引起光子的发射。驱动电路的主要功能是将交流电压转换为恒流电源,同时按照LED器件的要求完成与LED的电压和电流的匹配。

      LED线性恒流(CC)驱动具有电路简单、使用元器件数量少和EMI小的特点。

      LED采用串联工作方式可以确保通过每只LED的工作电流一致,而LED恒压(CV)驱动LED并联使用时则不能确保通过每只LED的工作电流一致。

      LED负载恒压驱动工作原理图如下图2所示,通过调节输出取样电阻RFB1和RFB2的取值,可以调节输出电压数值。由于LED的发光色温、输出流明数和LED的正向工作电流有关,为稳定LED光输出,实用中不宜采用恒压LED驱动工作方式。

      LED恒流驱动工作原理图如图3所示,稳定的LED负载工作电流对稳定LED的发光色温和输出流明数有利。所以,实用中LED负载采用恒流驱动较为有利。在图3中,调节电流取样电阻RFB的参数就可以实现LED负载驱动工作电流的调节。

      常用LED驱动电路拓扑与特点如表1所示,公式中D表示开关变换脉冲占空比。

      LED是由电流驱动的器件,其亮度与正向电流呈比例关系。有两种方法可以控制正向电流。

      第一种方法是采用LED V-I曲线来确定产生预期正向电流所需要向LED施加的电压。其实现方法一般采用一个电压电源和一个镇流电阻器。如下所述,此方法有 多项不足之处。LED正向电压的任何变化都会导致LED电流的变化。如果额定正向电压为3.6V,则图1中LED的电流为20mA.如果电压变为 4.0V,这是温度或制造变化引起的特定压变,那么正向电流则降低到14mA.正向电压变化11%会导致更大的正向电流变化,达30%.另外,根据可用的 输入电压,镇流电阻的压降和功耗会浪费功率和降低电池使用寿命。

      第二种方法、也是首选的LED电流调整方法是利用恒流电源来驱动LED.恒流电源可消除正向电压变化所导致的电流变化。因此可产生恒定的LED亮度,无论 正向电流如何变化。产生恒流电源很容易。只需要调整通过电流检测电阻器的电压,而不用调整电源的输出电压。图2说明了这种方法。电源参考电压和电流检测电 阻器值决定了LED电流。在驱动多个LED时,只需把它们串联就可以在每个LED中实现恒定电流。驱动并联LED需要在每个LED串中放置一个镇流电阻, 这会导致效率降低和电流失配。

      便携式应用中电池使用寿命是至关重要的。LED驱动器如果实用,就必须具备高效性。LED驱动器的效率测量与典型电源的效率测量不同。典型电源效率测量的 定义是输出功率除以输入功率。而对于LED驱动器来说,输出功率并非相关参数。重要的是产生预期LED亮度所需要的输入功率值。这可以简单地通过使LED 功率除以输入功率来确定。请注意:如果这样定义效率的话,则电流检测电阻器中的功耗会导致电源功率耗散。通过图3所示的公式,我们可以看出较小的电流传感 电压会产生较高效率的LED驱动器。图4说明了选用0.25V参考电压的电源与选用1V参考电压的电源相比,二者的效率提高情况。较低的电流传感电压电源 更为有效,无论输入电压或LED电流如何,只要其他条件相同,较低的参考电压都可以提高效率并延长电池的使用寿命。

      许多便携式LED应用都需要进行光度调节。在LCD背光等应用中,调光功能可提供亮度及对比度调节。我们可采用两种调光方法:模拟与 PWM.利用模拟调光,通过向LED施加50%的最大电流可实现50%的亮度。这种方法的缺点是会出现LED颜色偏移并且需要采用模拟控制信号,因此使用 率一般不高。以更低忙闲度向LED施加满电流可实现PWM调光。在50%忙闲度施加满电流可达到50%亮度。为确保人的肉眼看不到PWM脉冲,PWM信号 的频率必须高于100Hz.最大PWM频率取决于电源启动与响应时间。为提供最大的灵活性以及集成简易性,LED驱动器应能够接受高达50kHz的PWM 频率。

      在恒流模式中操作电源需要采用过压保护功能。无论负载为多少,恒流电源都可产生恒定输出电流。如果负载电阻增大,电源的输出电压也必须随之增大。这就是电 源保持恒流输出的方法。如果电源检测到过大的负载电阻,或者负载断开的话,输出电压可提高到超出IC或其他分立电路元件的额定电压范围。恒流 LED驱动器可采用多种过压保护方法。其中一个方法是使齐纳二极管与LED并联。这种方法可以将输出电压限制到齐纳击穿电压和电源的参考电压。在过压条件 下,输出电压会提高到齐纳击穿点并开始传导。输出电流会通过齐纳二极管,然后通过电流检测电阻器接地。在齐纳二极管限制最大输出情况下电源可连续产生恒定 的输出电流。更佳的过压保护方法是监控输出电压并在达到过压分界点时关闭电源。如果出现故障,在过压条件下关断电源可降低功耗并延长电池使用寿命。

      LED驱动电源中一个经常被忽视的功能是负载断开。在电源失效时负载断开功能可以把LED从电源断开。这种功能在下列两种情况下至关重要,即断电和PWM 调光。在升压转换器断电期间,负载仍然通过电感器和捕获二极管与输入电压连接。由于输入电压仍然与LED连接,即使电源已经失效,就会继续产 生一个小电流。即使很小的泄漏电流也会在很长的空闲期间极大缩短电池寿命。负载断开在PWM调光时也很重要。在PWM空闲期间,电源已经失效,但是输出电 容器仍然与LED连接。如果没有负载断开功能,输出电容器会通过LED放电,直到PWM脉冲再次打开电源。由于电容器在每个PWM循环开始都部分放电,一 次电源必须在每个PWM循环开始时给输出电容器充电。因此会在每个PWM循环产生突入电流脉冲。突入电流会降低系统效率并在输入总线上产生瞬时电压。而如 果具有负载断开功能,LED就会从电路断开,这样,在电源失效时就不会存在泄漏电流,而且在PWM调光循环之间输出电容器都是充满的。实施负载断开电路时 最好在LED和电流传感电阻器之间放置一个MOSFET.在电流传感电阻器和接地之间放置MOSFET会产生一个附加压降,其在输出电流设定点会把自身显 示为一个差错。

      简便易用是相对而言的。在评估电路的简便易用性时,不但必须考虑初始设计的复杂性,而且还必须要考虑在未来进行快速修改并把电路用于其他有不同输入或输出 要求的程序时需要做的工作。总之,滞后控制器非常简便易用。滞后控制器可消除传统电源设计中必需的复杂频率补偿功能。虽然频率补偿对于有经验的电源设计人 员来说是小菜一碟,但是对于新手来说就不那么轻松了。由于最佳的补偿随输入和输出条件的不同而不同,传统的电源设计不能实现针对不同操作条件的快速修改。 而滞后控制器具有内在的稳定性从而在输出/输出条件改变时无需改变。

      小尺寸是便携式电路的一个重要特性。电路元件的尺寸受多种因素的影响。其中一个因素是切换频率。高切换频率允许采用小型无源元件。用于便携应用的现代 LED驱动器应能够以高达1MHz频率切换。由于切换频率并不能明显缩小电路尺寸,而且较高的切换损耗会降低效率和缩短电池寿命,所以建议切换频率一般不 超过1MHz.把各种功能集成到控制IC是实现小型驱动解决方案的一个最重要的因素。如果上述所有功能都通过分离的元件实现的话,它们所需要的电路板空间 将超出电源自身占用的空间。把它们集成到控制IC可大大缩小整体驱动器尺寸。功能集成的第二个同样重要优势是可以降低解决方案总成本。如果分步执行的话, LED驱动器中所有预期功能会导致每额外个别成本增加0.60~0.70美元。而当集成到控制IC时,这些功能只会增加IC成本0.10~0.15美元。

      由于受到LED功率水平的限制,通常需同时驱动多个LED以满足亮度需求,因此,需要专门的驱动电路来点亮LED.

      1. 阻容降压:利用电容在交流下的阻抗来限制输入电流,从而获得直流电平给LED供电。这种驱动方式结构简单,成本低廉,但是输入非隔离方案,有安全隐患。而且转换效率很低,无法做到恒流控制。

      再通过光耦将此电平的纹波反馈回原边,从而自激稳定。此类电路符合安规认定要求,而且输出恒流精度较好,转换效率较高。但由于需要光耦和副边恒流控制电路,导致系统复杂,体积大,成本高。

      3. 原边方案:原边方案就是通过完全在交流原边控制输出的电源和电流,最精确可以做到5%的恒流精度,副边仅需简单的输出电路即可。原边主要依靠辅助边的反馈来控制输出电压,依靠限流电阻对原边电流的控制,同时乘以匝比来控制输出电流的精度。原边方案继承了隔离反激电路的种种优点,同时架构简单,可以做到小体积和低成本。

      LED的发光原理是在它两端加上正向电压,使半导体中的少数载流子和多数载流子发生复合,放出过剩能量,从而引起光子的发射。LED驱动电路的主要功能是将交流电压转换为恒流电源,同时按照LED器件的要求完成与LED的电压和电流的匹配。

      一是尽可能保持恒流特性,尤其在电源电压发生±15%的变动时,仍应能保持输出电流在±10%的范围内变动。

      二是驱动电路应保持较低的自身功耗,这样才能使LED的系统效率保持在较高水准。

      LED驱动电路应确保LED的恒流工作特性,尤其在电源供电电压发生变化时,仍能保持LED工作电流的稳定。实现:

      同时,LED驱动电路应保持较低的功耗,这样才能使LED照明系统的工作效率保持在较高水平。

      尤其在调光方面,LED 不仅可实现0~100%的调光,而且还可以保证在整个调光过程中有较高的发光效率,并不损害LED 的工作寿命,而气体放电灯则很难做到这一点。

      LED灯具中有关部件损坏比例如图1所示,其中,LEDs的损坏率为10%,控制电路为7%,LED灯具的安装为31%,LED驱动器为52%.可见在LED灯具中LEDs的损坏率并不高,LED驱动电路失效率相对较高为52%,LED灯具失效90%并非来自LED(数据来源:Appalachian Lighting Systems)。该数据的统计条件是在5400件LED灯具中失效灯具为29具(失效率为:0.54%)的实验条件下进行的。

      在LED驱动电路的使用过程中应注意LED驱动电路的应用场合,例如注意LED驱动电路的用途、安装方式、环境噪声干扰、正确使用LED驱动电路和有关技术支持会对提高LED驱动电源工作可靠性有帮助。

      在使用LED驱动电路时还需注意LED驱动电路的输入电压适应范围、输出电压和输出电流变化范围,合理对LED及其驱动电路进行热管理,LED驱动电路应选用合适型号的电解电容器。

      对LED驱动电路的机械部件注意安装机械应力、抗震动性和防潮湿、防水等问题。注意有关光学部件和LED部件的光输出、发光颜色、发光角等技术参数对使用环境的影响,注意LED驱动电路的抗UV/抗化学腐蚀性和正确使用LED驱动电路等问题。

      3.目前只有很少的LED驱动技术是采用RDM(远程部署管理)技术来实现对LED灯具工作状态的遥控监测。

      从以上对LED驱动电路的概述、工作原理、主要特点、功能特性、存在的问题进行分析而提出了LED驱动电路的技术指标,更有利于我们全面的了解LED驱动电路。

      对LED 驱动电路主要技术指标有:最大输出功率,允许工作温度范围,瞬态开/关工作特性,功率因数不低于0.9,输入和输出电压变化范围,允许的最大输入电压和电流,驱动电源的总谐波失真(THD)等。

      对更高级的LED驱动器应具有可以监测和报告LED照明系统所有工作状态参数和智能控制功能,例如可以实现对LED的VF值无需分级、对由于LED驱动器和LED灯具之间的线路电压降进行自动检测和补偿、光学反馈、自动进行白光LED的相关色温(CCT)控制、多色LED相关色温(CCT)控制等控制功能。